A Handbook for

Engineering Mathematics

Contains key theory concepts, formulae and practice problems for

GATE

Also useful for ESE & other competitive examinations

MADE EASY Publications Pvt. Ltd.

Corporate Office: 44-A/4, Kalu Sarai, New Delhi-110016

Phone: 011-45124660, 8860378007 **E-mail:** infomep@madeeasy.in

Website: www.madeeasypublications.org

A Handbook for Engineering Mathematics

© Copyright, by MADE EASY Publications Pvt. Ltd.

All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photo-copying, recording or otherwise), without the prior written permission of the above mentioned publisher of this book.

First Edition: 2017 Reprint: 2021

Reprint: 2022

Director's Message

B. Singh (Ex. IES)

When the topic of completion of subjects comes while preparing for competitive exams, then studying one extra subject called as MATHEMATICS is often a tough pill to swallow. This is mainly due to the time constraints; as in this competitive environment when everybody is toiling, there is a lot to do in a limited time frame.

As it is rightly said," Mathematics is not about numbers, equations, computations or algorithms it is about understanding." Understanding mathematics is not as easy as it is said; to simplify this easy to say but difficult to be done task, the MADE EASY team has come up with this Handbook of Mathematics which contains all formulae and theoretical concepts of Engineering Mathematics.

And as we all know" the only way to learn mathematics is to do mathematics", so to facilitate all aspirants we have incorporated practice problems for GATE, which will help you to strengthen the concepts and gain confidence. This book will act as a two in one tool for preparation, initially will help in preparing the subject and later will serve as a revision aid with all formulae at one place.

I acknowledge the sincere efforts of Mr. D.V. Sridhar and hope this book will assist in preparation of GATE, ESE and other competitive examinations.

B. Singh (Ex. IES)
CMD, MADE EASY Group

A Handbook for

Engineering Mathematics

CONTENTS

Unit-1: Basic Concepts1-24
Unit-2: Calculus
Unit-3: Linear Algebra56-88
Unit-4: Probability89-131
Unit-5: Differential Equations
Unit-6: Vector Calculus159-191
Unit-7: Complex Analysis192-213
Unit-8: Numerical Methods214-236
Unit-9: Laplace Transforms237-242
Unit-10: Fourier Series243-248
Unit-11: Partial Differential Equations (PDE)249-257
Unit-12: Hypothesis Testing258-267
0000

A Handbook for **Engineering Mathematics**

1

Basic Concepts

CONTENTS

l.	Elementary Algebra	2
П.	Geometry	5
III.	Analytic Geometry	7
IV.	Elementary Functions	13
V.	Trigonometry	17
VI.	Theory of Equations	23

Elementary Algebra

Powers and Roots

(i)
$$a^0 = 1$$
; $a \neq 0$

(ii)
$$a^m a^n = a^{m+n}$$

(i)
$$a^0 = 1; a \neq 0$$
 (ii) $a^m a^n = a^{m+n}$ (iii) $\frac{a^m}{a^n} = a^{m-n}$

$$(iv) (ab)^m = a^m b^m$$

(iv)
$$(ab)^m = a^m b^m$$
 (v) $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$ (vi) $\left(a^m\right)^n = a^{mn}$

$$(vi) \quad \left(a^m\right)^n = a^{mn}$$

(vii)
$$a^{-m} = \frac{1}{a^m}$$

(viii)
$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

(vii)
$$a^{-m} = \frac{1}{a^m}$$
 (viii) $\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$ (ix) $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

(x)
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

2. Logarithms

Definition: $y = \log_a(x)$ if and only if $a^y = x$ where a, x > 0 and $a \ne 1$. **Natural logarithm:** $e^y = x$ if and only if $y = \log_e(x) = \ln(x)$

Where
$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = 2.71828182846...$$

(i)
$$\log_a 1 = 0$$

(ii)
$$\log_a a = 1$$

(iii)
$$\log_a(mn) = \log_a m + \log_a n$$

(iii)
$$\log_a(mn) = \log_a m + \log_a n$$
 (iv) $\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$

(v)
$$\log_a(m^n) = n \log_a m$$

(vi)
$$\log_b a = \frac{1}{\log_a b}$$

(vii)
$$\log_{(a^k)}(m) = \frac{1}{k}\log_a m$$

(viii) $\log_a m = \log_b m \cdot \log_a b$ where b > 0 and $b \ne 1$

(ix)
$$\log_a m = \frac{\log_b m}{\log_b a}$$

$$(x) \quad x^{\log_a y} = y^{\log_a x}$$

(xi)
$$x = x^{\log_a a} = a^{\log_a x}$$

(xii)
$$x = e^{\ln x} = \ln e^x$$

3. Binomial Theorem

- (i) Factorials
 - (a) $n! = 1 \times 2 \times 3 \times ... \times (n-1) \times n$ (b) 0! = 1! = 1
- (ii) Binomial Coefficient ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$
- (iii) Binomial Theorem

$$(x+y)^n = {^nC_0}x^n + {^nC_1}x^{n-1}y + {^nC_2}x^{n-2}y^2 + \dots + {^nC_n}y^n$$

- (iv) Product Formulas
 - (a) $(a+b)^2 = a^2 + 2ab + b^2$
 - (b) $(a-b)^2 = a^2 2ab + b^2$
 - (c) $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
 - (d) $(a-b)^3 = a^3 3a^2b + 3ab^2 b^3$
- (v) Factoring Formulas
 - (a) $a^2 b^2 = (a b)(a + b)$
 - (b) $a^3 b^3 = (a b)(a^2 + ab + b^2)$
 - (c) $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
 - (d) $a^{2n} b^{2n} = (a^n b^n)(a^n + b^n)$
 - (e) $a^n b^n = (a b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + ... + ab^{n-2} + b^{n-1})$

Example:
$$(1-x^n) = (1-x)(1+x+x^2+x^3+...+x^{n-1})$$

(f) If n is odd then,

$$a^{n} + b^{n} = (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots - ab^{n-2} + b^{n-1})$$

Example:

(g)
$$a^5 - b^5 = (a - b)(a^4 + a^3b + a^2b^2 + ab^3 + b^4)$$

(h)
$$a^5 + b^5 = (a+b)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)$$

4. Sequences

(i) Arithmetic sequence

$$a,\,a+d,\,\mathbf{a}+2d,\,a+3d,\dots$$

$$n^{\text{th}}$$
 term = $t_n = a + (n-1)d$

Sum to n terms =
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

(ii) Geometric sequence:

$$a$$
, ar , ar^2 , ar^3 ,...
 n^{th} term = $t_n = ar^{n-1}$

Sum to
$$n$$
 terms = $S_n = \begin{cases} \frac{a(r^n - 1)}{(r - 1)} & r > 1 \\ \frac{a(1 - r^n)}{(1 - r)} & r < 1 \\ na & r = 1 \end{cases}$

(iii) Sum to infinite terms of geometric sequence

$$S_{\infty} = a + ar + ar^2 + \dots = \frac{a}{1 - r}$$
 $-1 < r < 1$

5. Mean Values of n real numbers

$$a_1, a_2, \ldots, a_n$$

- (i) Arithmetic mean: $\frac{a_1 + a_2 + ... + a_n}{n}$
- (ii) Geometric mean: $(a_1.a_2....a_n)^{1/n}$

(iii) Harmonic mean:
$$\frac{n}{(1/a_1)+(1/a_2)+...+(1/a_n)}$$

6. Formulas for summation

1.
$$1+2+...+n=\frac{n(n+1)}{2}$$

2.
$$1+3+...+(2n-1)=n^2$$

3.
$$2+4+...+(2n)=n(n+1)$$

4.
$$1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

5.
$$1^3 + 2^3 + ... + n^3 = \frac{n^2 (n+1)^2}{4}$$

Geometry

1. Two-Dimensional Geometry

Shape	Figure	Perimeter	Area	
Trapezoid	$\begin{array}{ c c c } \hline b_1 \\ \hline b_1 \\ \hline b_2 \\ \hline \end{array}$	$P = b_1 + b_2 + c + d$ $b_1, b_2 = bases$ $c, d = sides$	$A = \frac{1}{2} (b_1 + b_2) h$ $b_{1} b_2 = \text{bases}$ $h = \text{height}$	
Parallelogram		P = 2b + 2c $b, c = sides$	A = bh b = base h = height	
Rectangle	$ \begin{array}{c c} b\\ c\\ h = c\\ b \end{array} $	P = 2b + 2c $b, c = sides$	A = bh b = base h = height	
Rhombus	$\frac{s}{d_1}$	P = 4s $s = side$	$A = bh = \frac{1}{2} (d_1 d_2)$ $d_1, d_2 = \text{diagonals}$	
Square		P = 4s s = side	$A = s^2 = \frac{1}{2} d^2$ $d = \text{diagonals}$	
Regular Polygon		P = ns n = number of sides s = side	$A = \frac{1}{2} a \cdot P$ $a = \text{apothem}$ $P = \text{perimeter}$	
Circle	7	$C = 2\pi r = \pi d$ $r = \text{radius}$ $d = \text{diameter}$	$A = \pi r^2$ $r = \text{radius}$	
Ellipse	r ₂	$P \approx 2\pi \sqrt{\frac{1}{2} (r_1^2 + r_2^2)}$ $r_1 = \text{major axis radius}$ $r_2 = \text{minor axis radius}$	$A = \pi r_1 r_2$ $r_1 = \text{major axis radius}$ $r_2 = \text{minor axis radius}$	

\triangleright

2. Three-Dimensional Geometry

Shape	Figure	Surface Area	Volume
Sphere		$SA = 4\pi r^2$ $r = \text{radius}$	$V = \frac{4}{3}\pi r^3$ $r = \text{radius}$
Right Cylinder		$SA = 2\pi rh + 2\pi r^2$ h = height r = radius of base	$V = \pi r^2 h$ $h = \text{height}$ $r = \text{radius of base}$
Cone		$SA = \pi rl + \pi r^2$ $l = \text{slant height}$ $r = \text{radius of base}$	$V = \frac{1}{3}\pi r^2 h$ $h = \text{height}$ $r = \text{radius of base}$
Square Pyramid		$SA = 2sl + s^2$ s = base side length l = slant height	$V = \frac{1}{3} s^{2}h$ $s = base \ side \ length$ $h = height$
Rectangular Prism		SA = 2 (lw + lh + wh) l = length w = width h = height	V = lwh l = length w = width h = height
Cube		$SA = 6s^2$ s = side length (all sides)	$V = s^3$ s = side length (all sides)
General Right Prism	l _l Base	SA = Ph + 2B P = Perimeter of base h = height (or length) B = area of base	V = Bh B = area of base h = height
Ellipsoid	a b	_	$\frac{4}{3}\pi abc$

■

III Analytic Geometry

1. 2D-Coordinate system

(i) Distance between Two points (x_1, y_1) and (x_2, y_2)

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

(ii) The point of division of the line joining (x_1, y_1) and (x_2, y_2) in the ratio m:n is

$$\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)$$

(iii) Midpoint of the line joining (x_1, y_1) and (x_2, y_2) is

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

(iv) Area of triangle formed the vertices (x_1, y_1) , (x_2, y_2) and (x_3, y_3) , is

$$A = \pm \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

Note:

 \square The sign is chosen so that the area is nonnegative.

☑ If the area is zero, then three points *A*, *B* and *C* are collinear (lie on same line)

(v) Distance between two points (r_1, θ_1) and (r_2, θ_2) is in polar coordinates is

$$d = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)}$$

(vi) Equations of transformation

(a) Cartesian to polar coordinates is

$$x = r \cos \theta$$
 and $y = r \sin \theta$

(b) Polar coordinates to Cartesian coordinates

$$r = \sqrt{x^2 + y^2}$$
 and $\theta = \tan^{-1} \left(\frac{y}{x}\right)$

2. Straight line

(i) Slope of line

(a) Slope (*m*) of line passing through the points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$
 $x_1 \neq x_2$

Inclination *of the line*: The angle made by the line with the positive direction of *x*-axis

(b) Slope (gradient) (*m*) of line with inclination θ is $m = \tan \theta$, $\theta \neq 90^{\circ}$

(c) Slope of line
$$ax + by + c = 0$$
 is $-\frac{a}{b}$

(ii) Equation of line

- (a) Point-slope form: $(y y_1) = m(x x_1)$ where slope = m and (x_1, y_1) is the point
- **(b) Point-point form:** $(y-y_1) = \frac{y_2 y_1}{x_2 x_1}(x x_1)$ where the points are (x_1, y_1) and (x_2, y_2)
- (c) Slope-Intercept Form: y = mx + c where slope = m and y-intercept = c
- (d) Intercept form: $\frac{x}{a} + \frac{y}{b} = 1$ where x-intercept = a and y-intercept = b
- (e) Point-inclination form: $\frac{x x_1}{\cos \theta} = \frac{y y_1}{\sin \theta} = r$ where inclination = θ and (x_1, y_1) is the point
- (f) Normal form: $x\cos\theta + y\sin\theta = p$
 - *p* =Length of the perpendicular (normal) from origin to the line.
 - θ = Angle of Inclination of normal with the positive direction of *x*-axis.
- (g) Vertical line x = a
- (h) Horizontal line y = b

(iii) Results

- (a) Angle between two lines having slopes m_1 and m_2 is $\tan^{-1} \frac{m_1 m_2}{1 + m_1 m_2}$.
- (b) Two lines are parallel if $m_1 = m_2$.
- (c) Two lines are perpendicular if $m_1 \cdot m_2 = -1$.
- (d) General Equation of Line is ax + by + c = 0.
- (e) Equation of Line parallel to is ax + by + c = 0 is ax + by + k = 0.

(f) The length of perpendicular from (x_1, y_1) to the line ax + by + c = 0

is
$$\left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|.$$

3. Circle

A circle is the set of all points in a plane that are equidistant from a fixed point in the plane.

(i) The equation of circle having center (h, k) and radius r is

$$(x-h)^2 + (y-k)^2 = r^2$$

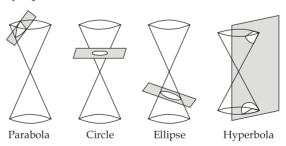
- (ii) The equation of circle with center at origin and radius r is $x^2 + y^2 = r^2$
- (iii) Parametric equations of circle $x^2 + y^2 = r^2$ are

$$x = r \cos \theta$$
 and $y = r \sin \theta$

(iv) The general Equation of circle: $x^2 + y^2 + 2gx + 2fy + c = 0$; Center (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$

4. Conic Sections

(i) General equation of conic


The Equation $ax^2 + bxy + cy^2 + dx + ey + f = 0$ represents

Ellipse if $b^2 - 4ac < 0$

Parabola if $b^2 - 4ac = 0$

Hyperbolaif $b^2 - 4ac > 0$

(ii) Conic sections are the curves obtained by intersecting a right circular cone by a plane.

(iii) A conic section is the locus of a point *P* which moves so that its distance from a fixed point [**Focus** *S*] is always in a constant ratio [**eccentricity** *e*] to its perpendicular distance from a fixed line [**Directrix**].

The conic is called

- Ellipse if e < 1
- **Parabola** if e = 1
- **Hyperbola** if e > 1

(a) Principal axis: A straight line passing through the focus and perpendicular to the directrix.

Note:

- ☑ Conic is symmetrical about Principal axis.
- **(b) Vertex:** The points of intersection of a conic and its principal axis.

Note:

- ☑ A conic has at most two vertices.
- **(c) Centre:** The point which bisects every chord of a conic passing through it.


Note:

- $\ensuremath{\square}$ If a conic has only one vertex then its centre coincides with the vertex.
- (d) Focal chord: A chord passing through the focus.
- **(e) Latus rectum:** The focal chord which is perpendicular to principal axis.
- **(f) Double ordinate:** A chord of the conic which is perpendicular to principal axis.

4. Parabola

The locus of a point (P) whose distance from a fixed point (S) bears a constant ratio (e = 1) to its distance from a fixed line (KZ) is called a parabola.

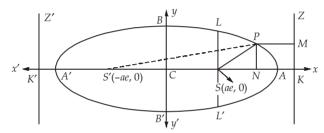
(i) The standard formula of a parabola: $y^2 = 4ax$

Focus: S(a, 0)Center: A(0, 0)

Principal axis: y = 0 (x-axis)

Eccentricity: e = 1

Length of Latus rectum: LL' = 4a


Equation of the directrix: x + a = 0

(ii) Parametric equations of the parabola: $x = at^2$; y = 2at

5. Ellipse

The locus of a point (P) whose distance from a fixed point (S and S')bears a constant ratio (e < 1) to its distance from a fixed line ((KZ and K'Z') is called an ellipse.

(i) Standard Equation of an ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Major axis: The line joining the two vertices A' and A

Minor axis: The line passing through the centre perpendicular to the major axis, i.e., BB'

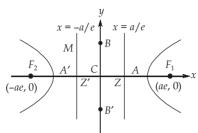
Principal axis: Major axis and Minor axis

Length of Major axis: 2a **Length of Minor axis**: 2*b*

Eccentricity:
$$e = \frac{\sqrt{a^2 - b^2}}{a}$$

Foci: S'(-ae, 0) and A'(a, 0)**Vertices:** A(-a, 0) and A'(a, 0)

Length of Latus rectum: $LL' = \frac{2b^2}{a}$


Equation of the directrix: $x = \pm \frac{a}{2}$

(ii) Parametric equations of the ellipse: $x = a \cos t$; $y = b \sin t$

6. Hyperbola

The locus of a point (P) whose distance from a fixed point (F_1 and F_2) bears a constant ratio (e > 1) to its distance from a fixed line is called a hyperbola.

(i) The standard formula of a hyperbola: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Transverse axis: The line segment *AA'* joining the vertices

Conjugate axis: The line segment joining the points B(0, b) and B'(0, -b) **Principal axis:** Major axis and Minor axis

Length of Transverse axis: 2a

Length of Conjugate axis: 2b

Equation of Transverse axis: y = 0 (x-axis)

Equation of Conjugate axis: x = 0 (*y*-axis)

Vertices: A(a, 0) and A'(-a, 0)

Eccentricity:
$$e = \frac{\sqrt{a^2 + b^2}}{a}$$

Foci:
$$F_2(-ae, 0)$$
 and $F_1(ae, 0)$

Equation of the directrix: $x = \pm \frac{a}{e}$

Length of Latus rectum LL': $LL' = \frac{2b^2}{a}$

(ii) Parametric equations of the hyperbola: $x = a \sec t$; $y = b \tan t$

7. Planes in three dimensions

(i) General form:

$$Ax + By + Cz + D = 0$$

where direction (A, B, C) is normal to the plane.

(ii) Intercept form:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

this plane passes through the points (a, 0, 0), (0, b, 0), and (0, 0, c).

(iii) Three point form

$$\begin{vmatrix} x - x_3 & y - y_3 & z - z_3 \\ x_1 - x_3 & y_1 - y_3 & z_1 - z_3 \\ x_2 - x_3 & y_2 - y_3 & z_2 - z_3 \end{vmatrix} = 0$$

(iv) Angle between two planes:

The angle between two planes:

$$A_1x + B_1y + C_1z + D_1 = 0$$

$$A_2x + B_2y + C_2z + D_2 = 0$$

$$\cos \theta = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + A_2^2 + A_3^2} \sqrt{B_1^2 + B_2^2 + B_3^2}}$$

Note:

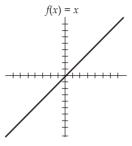
- \square The Planes are parallel if and only if $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$
- ☑ The Planes are perpendicular if and only if

$$A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$$

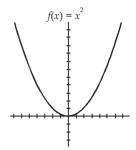
(v) The Distance of $P(x_1, y_1, z_2)$ from the plane Ax + By + Cz + D = 0 is

$$d = \frac{\left| Ax_1 + Bx_2 + Cx_3 + D \right|}{\sqrt{A^2 + B^2 + C^2}}$$

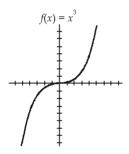
IV Elementary Functions

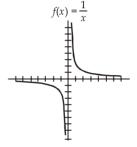

A function f from set A to set B (f: $A \rightarrow B$) is a rule which assigns every element of A to a unique element of B.

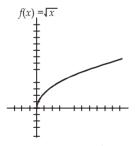
Where A is domain; B is co-domain; f(A) is range

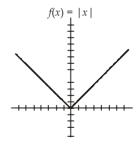

- (i) **Monotonicity** (A monotonic function preserves or reverses the given order) f(x) is
 - (a) Monotonically increasing if $m \le n \Rightarrow f(m) \le f(n)$.
 - (b) Monotonically decreasing if $m \le n \Rightarrow f(m) \ge f(n)$.
 - (c) Strictly increasing if $m < n \Rightarrow f(m) < f(n)$.
 - (d) Strictly decreasing if $m < n \Rightarrow f(m) > f(n)$.
- (ii) **Bounded Function:** $m \le f(x) \le M$ for all $x \in Domain$
- (iii) Even Function: f(-x) = f(x) Graph is symmetric about y axis
- (iv) Odd Function: f(-x) = -f(x) Graph is symmetric about origin
- (v) Periodic Function of period T: f(x + T) = f(x)

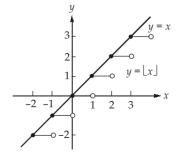
(vi) Basic Functions


(a) Identity Function

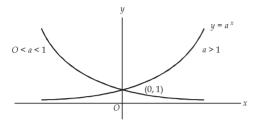

(b) Squaring Function

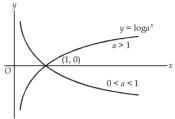

(c) Cubing Function


(d) Reciprocal Function


(e) Square Root Function

(f) Absolute Value Function




(g) Greatest Integer function (int(x) or [x]): Greatest integer less than or equal to x

- (h) Exponential Function $y = a^x$ a > 0 $(a \ne 1)$
- (i) Logarithmic Function

$$y = \log_a x$$
 $a > 0$ $(a \ne 1)$
 $y = \log_e x = \ln x$

(vii) Properties

Function	Domain	Range	Symmetry	Bounded	Increasing	Decreasing	
1. Identity	(-∞,+∞)	(-∞, +∞)			$(-\infty, +\infty)$		
function	or	or	Odd	No	or	None	
y = x	all x	all y			all x		
2.Squaring	(-∞,+∞)	[0,∞)		Bounded	(0, +∞)	(-∞, 0)	
Function	or	or	Even	Even Below	or	or	
$y = x^2$	all x	<i>y</i> ≥0		Delow	x > 0	x < 0	
3. Cubing	(-∞,+∞)	$(-\infty, +\infty)$					
Function	or	or	Odd	No	$(-\infty, +\infty)$	None	
$y = x^3$	all x	all y					
4. Reciprocal	(-∞,0)∪(0,∞)	(-∞,0)∪(0,∞)				(-∞,0)∪(0,∞)	
Function	or	or	Odd	No	None	or	
$y = \frac{1}{x}$	<i>x</i> ≠0	<i>y</i> ≠0				<i>x</i> ≠ 0	
5. Square root	[0,∞)	[0,∞)		Bounded	[0,∞)		
Function	or	or	None	Below	or	None	
$y = \sqrt{x}$	$x \ge 0$	$y \ge 0$		below	<i>x</i> ≥0		
6.Exponential	(-∞,+∞)			Bounded	(-∞, +∞)		
Function	or	(0,+∞)	None	None	Below	or	None
$y = e^x$	all x			below	all x		
7.Logarithm	(0,+∞)	(-∞, +∞)			(0, +∞)		
Function	or	or	None	None	or	None	
$y = \ln x$	<i>x</i> > 0	all y			x > 0		
8. Absolute Value	(-∞,+∞)	[0,∞)	Day	Even Bounded Below	(0, ∞)	(-∞, 0)	
Function	or	or	Even		or	or	
y = x	all x	<i>y</i> ≥0			x > 0	x < 0	
9. Greatest integer	(-∞,+∞)	Z					
Function	or	(Set of integers)	None None	None	None	None	
$y = \operatorname{int}(x = [x])$	all x	(Set of filtegers)					

(viii) Polynomial Function

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

(ix) Hyperbolic functions

Hyperbolic function	Domain	Range	Graph
$1.\sinh x = \frac{e^x - e^{-x}}{2}$	(−∞, +∞) or all <i>x</i>	$(-\infty, +\infty)$ or all y	$y = \sin hx$ 0
$2.\cos h \ x = \frac{e^x + e^{-x}}{2}$	(-∞, +∞) or all <i>x</i>	$[1, \infty)$ or $y \ge 1$	$y = \cosh x$ $y = \cosh x$
$3. \csc hx = \frac{2}{e^x - e^{-x}}$	$(-\infty, 0) \cup (0, \infty)$ or $x \neq 0$	$(-\infty, 0) \cup (0, \infty)$ or $y \neq 0$	$y = \operatorname{csch} x$
$4. \sec hx = \frac{2}{e^x + e^{-x}}$	(−∞, +∞) or all <i>x</i>	$(0, 1]$ or $0 < y \le 1$	$y = \sec hx$
5. $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	$(-\infty, +\infty)$ or all x	(-1, +1) or y < 1	$y = \tan hx$ 0 -1
6. $\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$	$(-\infty, 0) \cup (0, \infty)$ or $x \neq 0$	$(-\infty, -1) \cup (1, \infty)$ $ y > 1$	$y = \cot hx$ 1 0 -1

(x) Function Transformations

Vertical Translation

y = f(x) + c Shift the graph up c units. y = f(x) - c Shift the graph down c units.